On Odd Covering Systems with Distinct Moduli

نویسندگان

  • Song Guo
  • Zhi-Wei Sun
  • SONG GUO
  • ZHI-WEI SUN
چکیده

A famous unsolved conjecture of P. Erdős and J. L. Selfridge states that there does not exist a covering system {as(mod ns)}s=1 with the moduli n1, . . . , nk odd, distinct and greater than one. In this paper we show that if such a covering system {as(mod ns)}s=1 exists with n1, . . . , nk all square-free, then the least common multiple of n1, . . . , nk has at least 22 prime divisors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Odd Covering Systems with Distinct

Abstract. A famous unsolved conjecture of P. Erdős and J. L. Selfridge states that there does not exist a covering system {as(mod ns)}ks=1 with the moduli n1, . . . , nk odd, distinct and greater than one. In this paper we show that if such a covering system {as(mod ns)}ks=1 exists with n1, . . . , nk all square-free, then the least common multiple of n1, . . . , nk has at least 22 prime divisors.

متن کامل

On the Infinitude of Covering Systems with Least Modulus Equal to 2

A finite set of residue classes ai (mod ni) with 1 < n1 < n2 < · · · < ns is called a covering system of congruences if every integer satisfies at least one of the congruences x ≡ai (mod ni). An example is the set {0 (mod 2), 1 (mod 3), 3 (mod 4), 5 (mod 6), 9 (mod 12)}. A covering system all of whose moduli are odd called an odd covering system is a famous unsolved conjecture of Erdös and Self...

متن کامل

Infinite Covering Systems of Congruences Which Don’t Exist

We prove there is no infinite set of congruences with: every integer satisfying exactly one congruence, distinct moduli, the sum of the reciprocals of the moduli equal to 1, the lcm of the moduli divisible by only finitely many primes, and a prime greater than 3 dividing any of the moduli.

متن کامل

On the Reducibility of Exact Covering Systems

There exist irreducible exact covering systems (ECS). These are ECS which are not a proper split of a coarser ECS. However, an ECS admiting a maximal modulus which is divisible by at most two distinct primes, primely splits a coarser ECS. As a consequence, if all moduli of an ECS A are divisible by at most two distinct primes, then A is natural. That is, A can be formed by iteratively splitting...

متن کامل

Composite Covering Systems of Minimum Cardinality

We write S(m, a) for the congruence class {n ∈ Z : n ≡ a (mod m)}. A covering system of congruences is a collection {S(m1, a1), S(m2, a2), . . . , S(mn, an)} with the property that ∪i=1S(mi, ai) = Z. Such a system is composite and incongruent if the moduli {mi : i = 1, . . . , n} are composite and distinct. We describe the composite incongruent covering systems of minimum cardinality, thus answ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005